"Después del juego es antes del juego"
Sepp Herberger

lunes, 23 de febrero de 2015

Configuración de las Xorg en Wheezy para Fujitsu P300

Continuamos con los incombustibles Fujitsu Scenic P300. Estos equipos tienen una tarjeta gráfica VGA integrada en la placa que se identifica así:
# lspci -nn | grep -i vga
00:02.0 VGA compatible controller [0300]: Intel Corporation 82845G/GL[Brookdale-G]/GE Chipset Integrated Graphics Device [8086:2562] (rev 01)
Esta tarjeta desde tiempos de Debian Lenny nos ha dado problemas con Debian, de buena gana hubiera comprado otras tarjetas gráficas y las hubiera pinchado en todos los P300 para ahorrarme dolores de cabeza, pero era imposible: la placa base de estos equipos no tiene ranura VGA. Que bien, ¿eh?. Así que no nos ha quedado otra que coexistir con ellas y hacerlas funcionar a base de pruebas.
Tras la migración a Wheezy y como ya es tradición, la configuración por defecto empezó a fallar: lentitud del escritorio (las ventanas se mueven a cámara lenta), a veces se quedaba la pantalla en negro al cerrar sesión, bloqueos en el gdm3 o una vez dentro de la sesión al trabajar con el navegador o el LibreOffice....

Primero vemos que versión del driver xorg-video-intel trae nuestra imagen:

# dpkg -l | grep xorg-video-intel
ii  xserver-xorg-video-intel              2:2.21.15-2~bpo70+1
Mmm,.. de backports (bpo). Demasiado moderna, así que desinstalo el paquete a mano y pongo el paquete de los repositorios regulares de Wheezy:
# dpkg -l | grep xorg-video-intel
ii  xserver-xorg-video-intel              2:2.19.0-6
Después de esto, la fluidez del escritorio mejora: las ventanas se abren, cierran y mueven con alegría. Pero la inestabilidad sigue y a veces hay cuelgues. Cuando sucede eso el teclado y los botones del ratón dejan de responder, pero puedo entrar por ssh y ver que el proceso xorg está cerca del 90% todo el tiempo. Además el syslog muestra estos mensajes coincidiendo con el instante del cuelgue:
Jan 30 14:04:01 A12-O01 kernel: [ 1631.224019] [drm:i915_hangcheck_elapsed] *ERROR* Hangcheck timer elapsed... GPU hung
Jan 30 14:04:01 A12-O01 kernel: [ 1631.224030] [drm] capturing error event; look for more information in /debug/dri/0/i915_error_stateaaaaa
Como ya somos perros viejos con esta tarjeta y su driver, generamos un xorg.conf a mano tal como explicamos aquí, sin meternos en los líos de los Modelines, por supuesto. Limpiamos el xorg.conf generado de los drivers de relleno, dejando solo el driver intel  y empezamos a jugar con sus opciones de configuración. Tras varios retoques junto con la experiencia de mis compañeros Paco y Noemí se solucionan todos los problemas de estabilidad con esta configuración:
# cat /etc/X11/xorg.conf
...
...
...
Section "Device"

    Identifier  "Card0"
    Driver      "intel"
    BusID       "PCI:0:2:0"
    Option      "AccelMethod"               "SNA"
    Option      "XAANoOffscreenPixmaps"     "True"
    Option      "DRI"                       "on"
    Option      "Shadow"                    "True"

EndSection
...
...
...
En resumen: aceleración SNA, XAANoOffscreenPixmaps a True, DRI a On y Shadow a True. Con esto tenemos de nuevo nuestro Debian en los P300 a prueba de bombas. Para los thinclients de las aulas la configuración se meterá en el lts.conf, quedando:
# cat /opt/ltsp/i386/etc/lts.conf
...
...
X_OPTION_01 = "\"AccelMethod\" \"sna\""
X_OPTION_02 = "\"XAANoOffscreenPixmaps\" \"True\""
X_OPTION_03 = "\"DRI\" \"on\""
X_OPTION_04 = "\"Shadow\" \"True\""
...
...
Regenerando después la imagen NBD del thinclient con ltsp-update-image.
Bueno, pues ya tenemos funcionando el instalache hasta que Debian Jessie aparezca en nuestras vidas....

lunes, 16 de febrero de 2015

¡Desperta, ferro!

En los IES de Extremadura tenemos en funcionamiento muchísimos viejos Pentium IV de hace 13 años como puestos Linux. El sistema en funcionamiento se basa en LTSP: el ordenador del profesor hace de servidor de aula y los equipos de los alumnos son clientes LTSP suyos. El sistema nos permite ejecutar las últimas versiones de software en equipos con 256Mb-512Mb de RAM y sin necesidad de disco duro. Un estupendo ahorro para todos los contribuyentes.

Una parte muy importante del sistema es que los equipos de los alumnos puedan ser encendidos mediante WakeOnLan desde el equipo del profesor, ya que están dentro de cajas cerradas. El servidor grita "¡Desperta, ferro!" cual soldado almogávar, y los thinclients se encienden y cargan el sistema operativo por la tarjeta de red mediante el protocolo PXE.

En mi caso tengo como thinclients los incombustibles Fujitsu P300, tan duros e inmunes a la obsolescencia programada que parecen hechos en la RDA.  Estos PC siempre habían funcionado sin problema hasta la versión 2.6.32 del kernel de Linux. A partir de ahí, el WakeOnLan dejó de funcionar. Como solución temporal nos quedamos un tiempo con la versión 2.6.32, pero es una medida intolerable ya que el kernel de Linux sigue evolucionando y no podemos quedarnos atrás.

El problema venía del driver de la tarjeta ethernet de los equipos. El lspci nos dice:

02:01.0 Ethernet controller [0200]: ADMtek NC100 Network Everywhere Fast Ethernet 10/100 [1317:0985] (rev 11)
    Subsystem: Fujitsu Technology Solutions Scenic N300 ADMtek AN983 10/100 Mbps PCI Adapter [1734:100c]
    Flags: bus master, fast Back2Back, medium devsel, latency 64, IRQ 23
    I/O ports at 3000 [size=256]
    Memory at d0100000 (32-bit, non-prefetchable) [size=1K]
    [virtual] Expansion ROM at 40000000 [disabled] [size=128K]
    Capabilities: [c0] Power Management version 2
    Kernel driver in use: tulip

El driver tulip es el que maneja esta tarjeta. Una cosa curiosa que pasaba en el kernel 2.6.32 y anteriores es que dicho driver no daba soporte WOL. Es decir, si hacías:

ethtool -s eth0 wol g

Te daba un error diciendo que el driver no soportaba eso. Lo gracioso es que el WOL estaba activo por defecto y funcionaba, aun cuando el driver no lo manejase. ¿Qué pasó en las versiones posteriores a la 2.6.32?: pues que alguien metió soporte para WOL dentro del driver. Ahora:

ethtool -s eth0 wol g

si funcionaba y no daba error, pero en la práctica los equipos desoían la petición de encenderse. En ninguna de las versiones posteriores de kernels (series 2.x y 3.x) se solucionó esto. Abrí una petición en sourceforge al desarrollador del driver y no me contestó. El driver sigue casi inmutable kernel tras kernel, con el WOL sin funcionar para nuestras tarjetas. Descargando el código fuente del kernel el correspondiente driver está en drivers/net/ethernet/dec/tulip/ y dentro de allí el fichero crítico es tulip_core.c. Ese es el lugar donde se ha implementado el soporte WOL.

Hacer una depuración del driver y ver que fallaba es algo que escapa a mis conocimientos y tiempo disponible, así que se me ocurrió otra cosa: ¿por qué no quitaba del driver todo lo añadido, recompilaba y cruzaba los dedos?. Para ello comparé el tulip_core.c de la versión 2.6.32 con el de la versión 3.2.0-4, que era el kernel con el que trabajaba, usando la utilidad de comparación de ficheros meld.

La verdad es que había bastantes diferencias, pero comentando partes, compilando, probando, obteniendo diversos alarmantes avisos de kernel panic y otros (segmentation fault,  apocalypse now, Venezuela-ETA-Podemos, Winter is coming, etc....), y volviendo a empezar varias veces di con el tulip_core.c correcto. Había conseguido quitar el soporte WOL, con lo que:

ethtool -s eth0 wol g

volvía a dar error, pero el WOL funcionaba de nuevo :-). Increíble: para que funcione una feature hay que eliminar la implementación de dicha feature. Me encanta la informática.

El tulip_core.c modificado que me funcionó sería (marco en negrita las partes que considero que tienen código WOL, algunas son las comentadas):

# cat tulip_core.c
/* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux.

 Copyright 2000,2001  The Linux Kernel Team
 Written/copyright 1994-2001 by Donald Becker.

 This software may be used and distributed according to the terms
 of the GNU General Public License, incorporated herein by reference.

 Please submit bugs to http://bugzilla.kernel.org/ .
*/

#define pr_fmt(fmt) "tulip: " fmt

#define DRV_NAME "tulip"
#ifdef CONFIG_TULIP_NAPI
#define DRV_VERSION    "1.1.15-NAPI" /* Keep at least for test */
#else
#define DRV_VERSION "1.1.15"
#endif
#define DRV_RELDATE "Feb 27, 2007"


#include 
#include 
#include 
#include "tulip.h"
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#ifdef CONFIG_SPARC
#include 
#endif

static char version[] =
 "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";

/* A few user-configurable values. */

/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
static unsigned int max_interrupt_work = 25;

#define MAX_UNITS 8
/* Used to pass the full-duplex flag, etc. */
static int full_duplex[MAX_UNITS];
static int options[MAX_UNITS];
static int mtu[MAX_UNITS];   /* Jumbo MTU for interfaces. */

/*  The possible media types that can be set in options[] are: */
const char * const medianame[32] = {
 "10baseT", "10base2", "AUI", "100baseTx",
 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
 "","","","", "","","","",  "","","","Transceiver reset",
};

/* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
 defined(CONFIG_SPARC) || defined(__ia64__) || \
 defined(__sh__) || defined(__mips__)
static int rx_copybreak = 1518;
#else
static int rx_copybreak = 100;
#endif

/*
  Set the bus performance register.
 Typical: Set 16 longword cache alignment, no burst limit.
 Cache alignment bits 15:14      Burst length 13:8
  0000 No alignment  0x00000000 unlimited  0800 8 longwords
  4000 8  longwords  0100 1 longword  1000 16 longwords
  8000 16 longwords  0200 2 longwords 2000 32 longwords
  C000 32  longwords  0400 4 longwords
 Warning: many older 486 systems are broken and require setting 0x00A04800
    8 longword cache alignment, 8 longword burst.
 ToDo: Non-Intel setting could be better.
*/

#if defined(__alpha__) || defined(__ia64__)
static int csr0 = 0x01A00000 | 0xE000;
#elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
static int csr0 = 0x01A00000 | 0x8000;
#elif defined(CONFIG_SPARC) || defined(__hppa__)
/* The UltraSparc PCI controllers will disconnect at every 64-byte
 * crossing anyways so it makes no sense to tell Tulip to burst
 * any more than that.
 */
static int csr0 = 0x01A00000 | 0x9000;
#elif defined(__arm__) || defined(__sh__)
static int csr0 = 0x01A00000 | 0x4800;
#elif defined(__mips__)
static int csr0 = 0x00200000 | 0x4000;
#else
#warning Processor architecture undefined!
static int csr0 = 0x00A00000 | 0x4800;
#endif

/* Operational parameters that usually are not changed. */
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT  (4*HZ)


MODULE_AUTHOR("The Linux Kernel Team");
MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver-Remarked");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
module_param(tulip_debug, int, 0);
module_param(max_interrupt_work, int, 0);
module_param(rx_copybreak, int, 0);
module_param(csr0, int, 0);
module_param_array(options, int, NULL, 0);
module_param_array(full_duplex, int, NULL, 0);

#ifdef TULIP_DEBUG
int tulip_debug = TULIP_DEBUG;
#else
int tulip_debug = 1;
#endif

static void tulip_timer(unsigned long data)
{
 struct net_device *dev = (struct net_device *)data;
 struct tulip_private *tp = netdev_priv(dev);

 if (netif_running(dev))
  schedule_work(&tp->media_work);
}

/*
 * This table use during operation for capabilities and media timer.
 *
 * It is indexed via the values in 'enum chips'
 */

struct tulip_chip_table tulip_tbl[] = {
  { }, /* placeholder for array, slot unused currently */
  { }, /* placeholder for array, slot unused currently */

  /* DC21140 */
  { "Digital DS21140 Tulip", 128, 0x0001ebef,
 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer,
 tulip_media_task },

  /* DC21142, DC21143 */
  { "Digital DS21142/43 Tulip", 128, 0x0801fbff,
 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
 | HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task },

  /* LC82C168 */
  { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
 HAS_MII | HAS_PNICNWAY, pnic_timer, },

  /* MX98713 */
  { "Macronix 98713 PMAC", 128, 0x0001ebef,
 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },

  /* MX98715 */
  { "Macronix 98715 PMAC", 256, 0x0001ebef,
 HAS_MEDIA_TABLE, mxic_timer, },

  /* MX98725 */
  { "Macronix 98725 PMAC", 256, 0x0001ebef,
 HAS_MEDIA_TABLE, mxic_timer, },

  /* AX88140 */
  { "ASIX AX88140", 128, 0x0001fbff,
 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
 | IS_ASIX, tulip_timer, tulip_media_task },

  /* PNIC2 */
  { "Lite-On PNIC-II", 256, 0x0801fbff,
 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, },

  /* COMET */
  { "ADMtek Comet", 256, 0x0001abef,
 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, },

  /* COMPEX9881 */
  { "Compex 9881 PMAC", 128, 0x0001ebef,
 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },

  /* I21145 */
  { "Intel DS21145 Tulip", 128, 0x0801fbff,
 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
 | HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task },

  /* DM910X */
#ifdef CONFIG_TULIP_DM910X
  { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
 tulip_timer, tulip_media_task },
#else
  { NULL },
#endif

  /* RS7112 */
  { "Conexant LANfinity", 256, 0x0001ebef,
 HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task },

};


static DEFINE_PCI_DEVICE_TABLE(tulip_pci_tbl) = {
 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
/* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
#ifdef CONFIG_TULIP_DM910X
 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
#endif
 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
 { 0x1414, 0x0001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Microsoft MN-120 */
 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
 { } /* terminate list */
};
MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);


/* A full-duplex map for media types. */
const char tulip_media_cap[32] =
{0,0,0,16,  3,19,16,24,  27,4,7,5, 0,20,23,20,  28,31,0,0, };

static void tulip_tx_timeout(struct net_device *dev);
static void tulip_init_ring(struct net_device *dev);
static void tulip_free_ring(struct net_device *dev);
static netdev_tx_t tulip_start_xmit(struct sk_buff *skb,
       struct net_device *dev);
static int tulip_open(struct net_device *dev);
static int tulip_close(struct net_device *dev);
static void tulip_up(struct net_device *dev);
static void tulip_down(struct net_device *dev);
static struct net_device_stats *tulip_get_stats(struct net_device *dev);
static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static void set_rx_mode(struct net_device *dev);
//static void tulip_set_wolopts(struct pci_dev *pdev, u32 wolopts);
#ifdef CONFIG_NET_POLL_CONTROLLER
static void poll_tulip(struct net_device *dev);
#endif

static void tulip_set_power_state (struct tulip_private *tp,
       int sleep, int snooze)
{
 if (tp->flags & HAS_ACPI) {
  u32 tmp, newtmp;
  pci_read_config_dword (tp->pdev, CFDD, &tmp);
  newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
  if (sleep)
   newtmp |= CFDD_Sleep;
  else if (snooze)
   newtmp |= CFDD_Snooze;
  if (tmp != newtmp)
   pci_write_config_dword (tp->pdev, CFDD, newtmp);
 }

}


static void tulip_up(struct net_device *dev)
{
 struct tulip_private *tp = netdev_priv(dev);
 void __iomem *ioaddr = tp->base_addr;
 int next_tick = 3*HZ;
 u32 reg;
 int i;

#ifdef CONFIG_TULIP_NAPI
 napi_enable(&tp->napi);
#endif

 /* Wake the chip from sleep/snooze mode. */
 tulip_set_power_state (tp, 0, 0);

 /* Disable all WOL events */
/* pci_enable_wake(tp->pdev, PCI_D3hot, 0);
 pci_enable_wake(tp->pdev, PCI_D3cold, 0);
 tulip_set_wolopts(tp->pdev, 0);*/

 /* On some chip revs we must set the MII/SYM port before the reset!? */
 if (tp->mii_cnt  ||  (tp->mtable  &&  tp->mtable->has_mii))
  iowrite32(0x00040000, ioaddr + CSR6);

 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
 iowrite32(0x00000001, ioaddr + CSR0);
 pci_read_config_dword(tp->pdev, PCI_COMMAND, ®);  /* flush write */
 udelay(100);

 /* Deassert reset.
    Wait the specified 50 PCI cycles after a reset by initializing
    Tx and Rx queues and the address filter list. */
 iowrite32(tp->csr0, ioaddr + CSR0);
 pci_read_config_dword(tp->pdev, PCI_COMMAND, ®);  /* flush write */
 udelay(100);

 if (tulip_debug > 1)
  netdev_dbg(dev, "tulip_up(), irq==%d\n", tp->pdev->irq);

 iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
 iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
 tp->cur_rx = tp->cur_tx = 0;
 tp->dirty_rx = tp->dirty_tx = 0;

 if (tp->flags & MC_HASH_ONLY) {
  u32 addr_low = get_unaligned_le32(dev->dev_addr);
  u32 addr_high = get_unaligned_le16(dev->dev_addr + 4);
  if (tp->chip_id == AX88140) {
   iowrite32(0, ioaddr + CSR13);
   iowrite32(addr_low,  ioaddr + CSR14);
   iowrite32(1, ioaddr + CSR13);
   iowrite32(addr_high, ioaddr + CSR14);
  } else if (tp->flags & COMET_MAC_ADDR) {
   iowrite32(addr_low,  ioaddr + 0xA4);
   iowrite32(addr_high, ioaddr + 0xA8);
//Nuevo:   
   iowrite32(0, ioaddr + 0xAC);
   iowrite32(0, ioaddr + 0xB0);
/*   iowrite32(0, ioaddr + CSR27);
   iowrite32(0, ioaddr + CSR28);*/
  }
 } else {
  /* This is set_rx_mode(), but without starting the transmitter. */
  u16 *eaddrs = (u16 *)dev->dev_addr;
  u16 *setup_frm = &tp->setup_frame[15*6];
  dma_addr_t mapping;

  /* 21140 bug: you must add the broadcast address. */
  memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
  /* Fill the final entry of the table with our physical address. */
  *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
  *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
  *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];

  mapping = pci_map_single(tp->pdev, tp->setup_frame,
      sizeof(tp->setup_frame),
      PCI_DMA_TODEVICE);
  tp->tx_buffers[tp->cur_tx].skb = NULL;
  tp->tx_buffers[tp->cur_tx].mapping = mapping;

  /* Put the setup frame on the Tx list. */
  tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
  tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
  tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);

  tp->cur_tx++;
 }

 tp->saved_if_port = dev->if_port;
 if (dev->if_port == 0)
  dev->if_port = tp->default_port;

 /* Allow selecting a default media. */
 i = 0;
 if (tp->mtable == NULL)
  goto media_picked;
 if (dev->if_port) {
  int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
   (dev->if_port == 12 ? 0 : dev->if_port);
  for (i = 0; i < tp->mtable->leafcount; i++)
   if (tp->mtable->mleaf[i].media == looking_for) {
    dev_info(&dev->dev,
      "Using user-specified media %s\n",
      medianame[dev->if_port]);
    goto media_picked;
   }
 }
 if ((tp->mtable->defaultmedia & 0x0800) == 0) {
  int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
  for (i = 0; i < tp->mtable->leafcount; i++)
   if (tp->mtable->mleaf[i].media == looking_for) {
    dev_info(&dev->dev,
      "Using EEPROM-set media %s\n",
      medianame[looking_for]);
    goto media_picked;
   }
 }
 /* Start sensing first non-full-duplex media. */
 for (i = tp->mtable->leafcount - 1;
   (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
  ;
media_picked:

 tp->csr6 = 0;
 tp->cur_index = i;
 tp->nwayset = 0;

 if (dev->if_port) {
  if (tp->chip_id == DC21143  &&
      (tulip_media_cap[dev->if_port] & MediaIsMII)) {
   /* We must reset the media CSRs when we force-select MII mode. */
   iowrite32(0x0000, ioaddr + CSR13);
   iowrite32(0x0000, ioaddr + CSR14);
   iowrite32(0x0008, ioaddr + CSR15);
  }
  tulip_select_media(dev, 1);
 } else if (tp->chip_id == DC21142) {
  if (tp->mii_cnt) {
   tulip_select_media(dev, 1);
   if (tulip_debug > 1)
    dev_info(&dev->dev,
      "Using MII transceiver %d, status %04x\n",
      tp->phys[0],
      tulip_mdio_read(dev, tp->phys[0], 1));
   iowrite32(csr6_mask_defstate, ioaddr + CSR6);
   tp->csr6 = csr6_mask_hdcap;
   dev->if_port = 11;
   iowrite32(0x0000, ioaddr + CSR13);
   iowrite32(0x0000, ioaddr + CSR14);
  } else
   t21142_start_nway(dev);
 } else if (tp->chip_id == PNIC2) {
         /* for initial startup advertise 10/100 Full and Half */
         tp->sym_advertise = 0x01E0;
                /* enable autonegotiate end interrupt */
         iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
         iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
  pnic2_start_nway(dev);
 } else if (tp->chip_id == LC82C168  &&  ! tp->medialock) {
  if (tp->mii_cnt) {
   dev->if_port = 11;
   tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
   iowrite32(0x0001, ioaddr + CSR15);
  } else if (ioread32(ioaddr + CSR5) & TPLnkPass)
   pnic_do_nway(dev);
  else {
   /* Start with 10mbps to do autonegotiation. */
   iowrite32(0x32, ioaddr + CSR12);
   tp->csr6 = 0x00420000;
   iowrite32(0x0001B078, ioaddr + 0xB8);
   iowrite32(0x0201B078, ioaddr + 0xB8);
   next_tick = 1*HZ;
  }
 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881) &&
     ! tp->medialock) {
  dev->if_port = 0;
  tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
  iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
  /* Provided by BOLO, Macronix - 12/10/1998. */
  dev->if_port = 0;
  tp->csr6 = 0x01a80200;
  iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
  iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
  /* Enable automatic Tx underrun recovery. */
  iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
  dev->if_port = tp->mii_cnt ? 11 : 0;
  tp->csr6 = 0x00040000;
 } else if (tp->chip_id == AX88140) {
  tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
 } else
  tulip_select_media(dev, 1);

 /* Start the chip's Tx to process setup frame. */
 tulip_stop_rxtx(tp);
 barrier();
 udelay(5);
 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);

 /* Enable interrupts by setting the interrupt mask. */
 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
 tulip_start_rxtx(tp);
 iowrite32(0, ioaddr + CSR2);  /* Rx poll demand */

 if (tulip_debug > 2) {
  netdev_dbg(dev, "Done tulip_up(), CSR0 %08x, CSR5 %08x CSR6 %08x\n",
      ioread32(ioaddr + CSR0),
      ioread32(ioaddr + CSR5),
      ioread32(ioaddr + CSR6));
 }

 /* Set the timer to switch to check for link beat and perhaps switch
    to an alternate media type. */
 tp->timer.expires = RUN_AT(next_tick);
 add_timer(&tp->timer);
#ifdef CONFIG_TULIP_NAPI
 init_timer(&tp->oom_timer);
        tp->oom_timer.data = (unsigned long)dev;
        tp->oom_timer.function = oom_timer;
#endif
}

static int
tulip_open(struct net_device *dev)
{
 struct tulip_private *tp = netdev_priv(dev);
 int retval;

 tulip_init_ring (dev);

 retval = request_irq(tp->pdev->irq, tulip_interrupt, IRQF_SHARED,
        dev->name, dev);
 if (retval)
  goto free_ring;

 tulip_up (dev);

 netif_start_queue (dev);

 return 0;

free_ring:
 tulip_free_ring (dev);
 return retval;
}


static void tulip_tx_timeout(struct net_device *dev)
{
 struct tulip_private *tp = netdev_priv(dev);
 void __iomem *ioaddr = tp->base_addr;
 unsigned long flags;

 spin_lock_irqsave (&tp->lock, flags);

 if (tulip_media_cap[dev->if_port] & MediaIsMII) {
  /* Do nothing -- the media monitor should handle this. */
  if (tulip_debug > 1)
   dev_warn(&dev->dev,
     "Transmit timeout using MII device\n");
 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142 ||
     tp->chip_id == MX98713 || tp->chip_id == COMPEX9881 ||
     tp->chip_id == DM910X) {
  dev_warn(&dev->dev,
    "21140 transmit timed out, status %08x, SIA %08x %08x %08x %08x, resetting...\n",
    ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
    ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14),
    ioread32(ioaddr + CSR15));
  tp->timeout_recovery = 1;
  schedule_work(&tp->media_work);
  goto out_unlock;
 } else if (tp->chip_id == PNIC2) {
  dev_warn(&dev->dev,
    "PNIC2 transmit timed out, status %08x, CSR6/7 %08x / %08x CSR12 %08x, resetting...\n",
    (int)ioread32(ioaddr + CSR5),
    (int)ioread32(ioaddr + CSR6),
    (int)ioread32(ioaddr + CSR7),
    (int)ioread32(ioaddr + CSR12));
 } else {
  dev_warn(&dev->dev,
    "Transmit timed out, status %08x, CSR12 %08x, resetting...\n",
    ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
  dev->if_port = 0;
 }

#if defined(way_too_many_messages)
 if (tulip_debug > 3) {
  int i;
  for (i = 0; i < RX_RING_SIZE; i++) {
   u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
   int j;
   printk(KERN_DEBUG
          "%2d: %08x %08x %08x %08x  %02x %02x %02x\n",
          i,
          (unsigned int)tp->rx_ring[i].status,
          (unsigned int)tp->rx_ring[i].length,
          (unsigned int)tp->rx_ring[i].buffer1,
          (unsigned int)tp->rx_ring[i].buffer2,
          buf[0], buf[1], buf[2]);
   for (j = 0; buf[j] != 0xee && j < 1600; j++)
    if (j < 100)
     pr_cont(" %02x", buf[j]);
   pr_cont(" j=%d\n", j);
  }
  printk(KERN_DEBUG "  Rx ring %p: ", tp->rx_ring);
  for (i = 0; i < RX_RING_SIZE; i++)
   pr_cont(" %08x", (unsigned int)tp->rx_ring[i].status);
  printk(KERN_DEBUG "  Tx ring %p: ", tp->tx_ring);
  for (i = 0; i < TX_RING_SIZE; i++)
   pr_cont(" %08x", (unsigned int)tp->tx_ring[i].status);
  pr_cont("\n");
 }
#endif

 tulip_tx_timeout_complete(tp, ioaddr);

out_unlock:
 spin_unlock_irqrestore (&tp->lock, flags);
 dev->trans_start = jiffies; /* prevent tx timeout */
 netif_wake_queue (dev);
}


/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
static void tulip_init_ring(struct net_device *dev)
{
 struct tulip_private *tp = netdev_priv(dev);
 int i;

 tp->susp_rx = 0;
 tp->ttimer = 0;
 tp->nir = 0;

 for (i = 0; i < RX_RING_SIZE; i++) {
  tp->rx_ring[i].status = 0x00000000;
  tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
  tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
  tp->rx_buffers[i].skb = NULL;
  tp->rx_buffers[i].mapping = 0;
 }
 /* Mark the last entry as wrapping the ring. */
 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);

 for (i = 0; i < RX_RING_SIZE; i++) {
  dma_addr_t mapping;

  /* Note the receive buffer must be longword aligned.
     netdev_alloc_skb() provides 16 byte alignment.  But do *not*
     use skb_reserve() to align the IP header! */
  struct sk_buff *skb = netdev_alloc_skb(dev, PKT_BUF_SZ);
  tp->rx_buffers[i].skb = skb;
  if (skb == NULL)
   break;
  mapping = pci_map_single(tp->pdev, skb->data,
      PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
  tp->rx_buffers[i].mapping = mapping;
  tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
  tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
 }
 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);

 /* The Tx buffer descriptor is filled in as needed, but we
    do need to clear the ownership bit. */
 for (i = 0; i < TX_RING_SIZE; i++) {
  tp->tx_buffers[i].skb = NULL;
  tp->tx_buffers[i].mapping = 0;
  tp->tx_ring[i].status = 0x00000000;
  tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
 }
 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
}

static netdev_tx_t
tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
 struct tulip_private *tp = netdev_priv(dev);
 int entry;
 u32 flag;
 dma_addr_t mapping;
 unsigned long flags;

 spin_lock_irqsave(&tp->lock, flags);

 /* Calculate the next Tx descriptor entry. */
 entry = tp->cur_tx % TX_RING_SIZE;

 tp->tx_buffers[entry].skb = skb;
 mapping = pci_map_single(tp->pdev, skb->data,
     skb->len, PCI_DMA_TODEVICE);
 tp->tx_buffers[entry].mapping = mapping;
 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);

 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
  flag = 0x60000000; /* No interrupt */
 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
  flag = 0xe0000000; /* Tx-done intr. */
 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
  flag = 0x60000000; /* No Tx-done intr. */
 } else {  /* Leave room for set_rx_mode() to fill entries. */
  flag = 0xe0000000; /* Tx-done intr. */
  netif_stop_queue(dev);
 }
 if (entry == TX_RING_SIZE-1)
  flag = 0xe0000000 | DESC_RING_WRAP;

 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
 /* if we were using Transmit Automatic Polling, we would need a
  * wmb() here. */
 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
 wmb();

 tp->cur_tx++;

 /* Trigger an immediate transmit demand. */
 iowrite32(0, tp->base_addr + CSR1);

 spin_unlock_irqrestore(&tp->lock, flags);

 return NETDEV_TX_OK;
}

static void tulip_clean_tx_ring(struct tulip_private *tp)
{
 unsigned int dirty_tx;

 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
  dirty_tx++) {
  int entry = dirty_tx % TX_RING_SIZE;
  int status = le32_to_cpu(tp->tx_ring[entry].status);

  if (status < 0) {
   tp->dev->stats.tx_errors++; /* It wasn't Txed */
   tp->tx_ring[entry].status = 0;
  }

  /* Check for Tx filter setup frames. */
  if (tp->tx_buffers[entry].skb == NULL) {
   /* test because dummy frames not mapped */
   if (tp->tx_buffers[entry].mapping)
    pci_unmap_single(tp->pdev,
     tp->tx_buffers[entry].mapping,
     sizeof(tp->setup_frame),
     PCI_DMA_TODEVICE);
   continue;
  }

  pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
    tp->tx_buffers[entry].skb->len,
    PCI_DMA_TODEVICE);

  /* Free the original skb. */
  dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
  tp->tx_buffers[entry].skb = NULL;
  tp->tx_buffers[entry].mapping = 0;
 }
}

static void tulip_down (struct net_device *dev)
{
 struct tulip_private *tp = netdev_priv(dev);
 void __iomem *ioaddr = tp->base_addr;
 unsigned long flags;

 cancel_work_sync(&tp->media_work);

#ifdef CONFIG_TULIP_NAPI
 napi_disable(&tp->napi);
#endif

 del_timer_sync (&tp->timer);
#ifdef CONFIG_TULIP_NAPI
 del_timer_sync (&tp->oom_timer);
#endif
 spin_lock_irqsave (&tp->lock, flags);

 /* Disable interrupts by clearing the interrupt mask. */
 iowrite32 (0x00000000, ioaddr + CSR7);

 /* Stop the Tx and Rx processes. */
 tulip_stop_rxtx(tp);

 /* prepare receive buffers */
 tulip_refill_rx(dev);

 /* release any unconsumed transmit buffers */
 tulip_clean_tx_ring(tp);

 if (ioread32(ioaddr + CSR6) != 0xffffffff)
  dev->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;

 spin_unlock_irqrestore (&tp->lock, flags);

 init_timer(&tp->timer);
 tp->timer.data = (unsigned long)dev;
 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;

 dev->if_port = tp->saved_if_port;

 /* Leave the driver in snooze, not sleep, mode. */
 tulip_set_power_state (tp, 0, 1);
}

static void tulip_free_ring (struct net_device *dev)
{
 struct tulip_private *tp = netdev_priv(dev);
 int i;

 /* Free all the skbuffs in the Rx queue. */
 for (i = 0; i < RX_RING_SIZE; i++) {
  struct sk_buff *skb = tp->rx_buffers[i].skb;
  dma_addr_t mapping = tp->rx_buffers[i].mapping;

  tp->rx_buffers[i].skb = NULL;
  tp->rx_buffers[i].mapping = 0;

  tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
  tp->rx_ring[i].length = 0;
  /* An invalid address. */
  tp->rx_ring[i].buffer1 = cpu_to_le32(0xBADF00D0);
  if (skb) {
   pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
      PCI_DMA_FROMDEVICE);
   dev_kfree_skb (skb);
  }
 }

 for (i = 0; i < TX_RING_SIZE; i++) {
  struct sk_buff *skb = tp->tx_buffers[i].skb;

  if (skb != NULL) {
   pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
      skb->len, PCI_DMA_TODEVICE);
   dev_kfree_skb (skb);
  }
  tp->tx_buffers[i].skb = NULL;
  tp->tx_buffers[i].mapping = 0;
 }
}

static int tulip_close (struct net_device *dev)
{
 struct tulip_private *tp = netdev_priv(dev);
 void __iomem *ioaddr = tp->base_addr;

 netif_stop_queue (dev);

 tulip_down (dev);

 if (tulip_debug > 1)
  netdev_dbg(dev, "Shutting down ethercard, status was %02x\n",
      ioread32 (ioaddr + CSR5));

 free_irq (tp->pdev->irq, dev);

 tulip_free_ring (dev);

 return 0;
}

static struct net_device_stats *tulip_get_stats(struct net_device *dev)
{
 struct tulip_private *tp = netdev_priv(dev);
 void __iomem *ioaddr = tp->base_addr;

 if (netif_running(dev)) {
  unsigned long flags;

  spin_lock_irqsave (&tp->lock, flags);

  dev->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;

  spin_unlock_irqrestore(&tp->lock, flags);
 }

 return &dev->stats;
}


static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
 struct tulip_private *np = netdev_priv(dev);
 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
 strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
}

/*
static int tulip_ethtool_set_wol(struct net_device *dev,
     struct ethtool_wolinfo *wolinfo)
{
 struct tulip_private *tp = netdev_priv(dev);

    if (wolinfo->wolopts & (~tp->wolinfo.supported))
     return -EOPNOTSUPP;

 tp->wolinfo.wolopts = wolinfo->wolopts;
 device_set_wakeup_enable(&tp->pdev->dev, tp->wolinfo.wolopts);
 return 0;
}

static void tulip_ethtool_get_wol(struct net_device *dev,
      struct ethtool_wolinfo *wolinfo)
{
 struct tulip_private *tp = netdev_priv(dev);

 wolinfo->supported = tp->wolinfo.supported;
 wolinfo->wolopts = tp->wolinfo.wolopts;
 return;
}

*/
static const struct ethtool_ops ops = {
 .get_drvinfo = tulip_get_drvinfo //,
// .set_wol     = tulip_ethtool_set_wol,
// .get_wol     = tulip_ethtool_get_wol,
};


/* Provide ioctl() calls to examine the MII xcvr state. */
static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
{
 struct tulip_private *tp = netdev_priv(dev);
 void __iomem *ioaddr = tp->base_addr;
 struct mii_ioctl_data *data = if_mii(rq);
 const unsigned int phy_idx = 0;
 int phy = tp->phys[phy_idx] & 0x1f;
 unsigned int regnum = data->reg_num;

 switch (cmd) {
 case SIOCGMIIPHY:  /* Get address of MII PHY in use. */
  if (tp->mii_cnt)
   data->phy_id = phy;
  else if (tp->flags & HAS_NWAY)
   data->phy_id = 32;
  else if (tp->chip_id == COMET)
   data->phy_id = 1;
  else
   return -ENODEV;

 case SIOCGMIIREG:  /* Read MII PHY register. */
  if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
   int csr12 = ioread32 (ioaddr + CSR12);
   int csr14 = ioread32 (ioaddr + CSR14);
   switch (regnum) {
   case 0:
                                if (((csr14<<5) & 0x1000) ||
                                        (dev->if_port == 5 && tp->nwayset))
                                        data->val_out = 0x1000;
                                else
                                        data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
                                                | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
    break;
   case 1:
                                data->val_out =
     0x1848 +
     ((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
     ((csr12&0x06) == 6 ? 0 : 4);
                                data->val_out |= 0x6048;
    break;
   case 4:
                                /* Advertised value, bogus 10baseTx-FD value from CSR6. */
                                data->val_out =
     ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
     ((csr14 >> 1) & 0x20) + 1;
                                data->val_out |= ((csr14 >> 9) & 0x03C0);
    break;
   case 5: data->val_out = tp->lpar; break;
   default: data->val_out = 0; break;
   }
  } else {
   data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
  }
  return 0;

 case SIOCSMIIREG:  /* Write MII PHY register. */
  if (regnum & ~0x1f)
   return -EINVAL;
  if (data->phy_id == phy) {
   u16 value = data->val_in;
   switch (regnum) {
   case 0: /* Check for autonegotiation on or reset. */
    tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
    if (tp->full_duplex_lock)
     tp->full_duplex = (value & 0x0100) ? 1 : 0;
    break;
   case 4:
    tp->advertising[phy_idx] =
    tp->mii_advertise = data->val_in;
    break;
   }
  }
  if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
   u16 value = data->val_in;
   if (regnum == 0) {
     if ((value & 0x1200) == 0x1200) {
       if (tp->chip_id == PNIC2) {
                                   pnic2_start_nway (dev);
                            } else {
       t21142_start_nway (dev);
                            }
     }
   } else if (regnum == 4)
    tp->sym_advertise = value;
  } else {
   tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
  }
  return 0;
 default:
  return -EOPNOTSUPP;
 }

 return -EOPNOTSUPP;
}


/* Set or clear the multicast filter for this adaptor.
   Note that we only use exclusion around actually queueing the
   new frame, not around filling tp->setup_frame.  This is non-deterministic
   when re-entered but still correct. */

static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
{
 struct tulip_private *tp = netdev_priv(dev);
 u16 hash_table[32];
 struct netdev_hw_addr *ha;
 int i;
 u16 *eaddrs;

 memset(hash_table, 0, sizeof(hash_table));
 __set_bit_le(255, hash_table);   /* Broadcast entry */
 /* This should work on big-endian machines as well. */
 netdev_for_each_mc_addr(ha, dev) {
  int index = ether_crc_le(ETH_ALEN, ha->addr) & 0x1ff;

  __set_bit_le(index, hash_table);
 }
 for (i = 0; i < 32; i++) {
  *setup_frm++ = hash_table[i];
  *setup_frm++ = hash_table[i];
 }
 setup_frm = &tp->setup_frame[13*6];

 /* Fill the final entry with our physical address. */
 eaddrs = (u16 *)dev->dev_addr;
 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
}

static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
{
 struct tulip_private *tp = netdev_priv(dev);
 struct netdev_hw_addr *ha;
 u16 *eaddrs;

 /* We have <= 14 addresses so we can use the wonderful
    16 address perfect filtering of the Tulip. */
 netdev_for_each_mc_addr(ha, dev) {
  eaddrs = (u16 *) ha->addr;
  *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
  *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
  *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
 }
 /* Fill the unused entries with the broadcast address. */
 memset(setup_frm, 0xff, (15 - netdev_mc_count(dev)) * 12);
 setup_frm = &tp->setup_frame[15*6];

 /* Fill the final entry with our physical address. */
 eaddrs = (u16 *)dev->dev_addr;
 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
}


static void set_rx_mode(struct net_device *dev)
{
 struct tulip_private *tp = netdev_priv(dev);
 void __iomem *ioaddr = tp->base_addr;
 int csr6;

 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;

 tp->csr6 &= ~0x00D5;
 if (dev->flags & IFF_PROMISC) {   /* Set promiscuous. */
  tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
  csr6 |= AcceptAllMulticast | AcceptAllPhys;
 } else if ((netdev_mc_count(dev) > 1000) ||
     (dev->flags & IFF_ALLMULTI)) {
  /* Too many to filter well -- accept all multicasts. */
  tp->csr6 |= AcceptAllMulticast;
  csr6 |= AcceptAllMulticast;
 } else if (tp->flags & MC_HASH_ONLY) {
  /* Some work-alikes have only a 64-entry hash filter table. */
  /* Should verify correctness on big-endian/__powerpc__ */
  struct netdev_hw_addr *ha;
  if (netdev_mc_count(dev) > 64) {
   /* Arbitrary non-effective limit. */
   tp->csr6 |= AcceptAllMulticast;
   csr6 |= AcceptAllMulticast;
  } else {
   u32 mc_filter[2] = {0, 0};   /* Multicast hash filter */
   int filterbit;
   netdev_for_each_mc_addr(ha, dev) {
    if (tp->flags & COMET_MAC_ADDR)
     filterbit = ether_crc_le(ETH_ALEN,
         ha->addr);
    else
     filterbit = ether_crc(ETH_ALEN,
             ha->addr) >> 26;
    filterbit &= 0x3f;
    mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
    if (tulip_debug > 2)
     dev_info(&dev->dev,
       "Added filter for %pM  %08x bit %d\n",
       ha->addr,
       ether_crc(ETH_ALEN, ha->addr),
       filterbit);
   }
   if (mc_filter[0] == tp->mc_filter[0]  &&
    mc_filter[1] == tp->mc_filter[1])
    ;    /* No change. */
   else if (tp->flags & IS_ASIX) {
    iowrite32(2, ioaddr + CSR13);
    iowrite32(mc_filter[0], ioaddr + CSR14);
    iowrite32(3, ioaddr + CSR13);
    iowrite32(mc_filter[1], ioaddr + CSR14);
   } else if (tp->flags & COMET_MAC_ADDR) {
//Nuevo
                iowrite32(mc_filter[0], ioaddr + 0xAC);
    iowrite32(mc_filter[1], ioaddr + 0xB0);
    /*iowrite32(mc_filter[0], ioaddr + CSR27);
    iowrite32(mc_filter[1], ioaddr + CSR28);*/
   }
   tp->mc_filter[0] = mc_filter[0];
   tp->mc_filter[1] = mc_filter[1];
  }
 } else {
  unsigned long flags;
  u32 tx_flags = 0x08000000 | 192;

  /* Note that only the low-address shortword of setup_frame is valid!
     The values are doubled for big-endian architectures. */
  if (netdev_mc_count(dev) > 14) {
   /* Must use a multicast hash table. */
   build_setup_frame_hash(tp->setup_frame, dev);
   tx_flags = 0x08400000 | 192;
  } else {
   build_setup_frame_perfect(tp->setup_frame, dev);
  }

  spin_lock_irqsave(&tp->lock, flags);

  if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
   /* Same setup recently queued, we need not add it. */
  } else {
   unsigned int entry;
   int dummy = -1;

   /* Now add this frame to the Tx list. */

   entry = tp->cur_tx++ % TX_RING_SIZE;

   if (entry != 0) {
    /* Avoid a chip errata by prefixing a dummy entry. */
    tp->tx_buffers[entry].skb = NULL;
    tp->tx_buffers[entry].mapping = 0;
    tp->tx_ring[entry].length =
     (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
    tp->tx_ring[entry].buffer1 = 0;
    /* Must set DescOwned later to avoid race with chip */
    dummy = entry;
    entry = tp->cur_tx++ % TX_RING_SIZE;

   }

   tp->tx_buffers[entry].skb = NULL;
   tp->tx_buffers[entry].mapping =
    pci_map_single(tp->pdev, tp->setup_frame,
            sizeof(tp->setup_frame),
            PCI_DMA_TODEVICE);
   /* Put the setup frame on the Tx list. */
   if (entry == TX_RING_SIZE-1)
    tx_flags |= DESC_RING_WRAP;  /* Wrap ring. */
   tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
   tp->tx_ring[entry].buffer1 =
    cpu_to_le32(tp->tx_buffers[entry].mapping);
   tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
   if (dummy >= 0)
    tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
   if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
    netif_stop_queue(dev);

   /* Trigger an immediate transmit demand. */
   iowrite32(0, ioaddr + CSR1);
  }

  spin_unlock_irqrestore(&tp->lock, flags);
 }

 iowrite32(csr6, ioaddr + CSR6);
}

#ifdef CONFIG_TULIP_MWI
static void tulip_mwi_config(struct pci_dev *pdev, struct net_device *dev)
{
 struct tulip_private *tp = netdev_priv(dev);
 u8 cache;
 u16 pci_command;
 u32 csr0;

 if (tulip_debug > 3)
  netdev_dbg(dev, "tulip_mwi_config()\n");

 tp->csr0 = csr0 = 0;

 /* if we have any cache line size at all, we can do MRM and MWI */
 csr0 |= MRM | MWI;

 /* Enable MWI in the standard PCI command bit.
  * Check for the case where MWI is desired but not available
  */
 pci_try_set_mwi(pdev);

 /* read result from hardware (in case bit refused to enable) */
 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
  csr0 &= ~MWI;

 /* if cache line size hardwired to zero, no MWI */
 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
 if ((csr0 & MWI) && (cache == 0)) {
  csr0 &= ~MWI;
  pci_clear_mwi(pdev);
 }

 /* assign per-cacheline-size cache alignment and
  * burst length values
  */
 switch (cache) {
 case 8:
  csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
  break;
 case 16:
  csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
  break;
 case 32:
  csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
  break;
 default:
  cache = 0;
  break;
 }

 /* if we have a good cache line size, we by now have a good
  * csr0, so save it and exit
  */
 if (cache)
  goto out;

 /* we don't have a good csr0 or cache line size, disable MWI */
 if (csr0 & MWI) {
  pci_clear_mwi(pdev);
  csr0 &= ~MWI;
 }

 /* sane defaults for burst length and cache alignment
  * originally from de4x5 driver
  */
 csr0 |= (8 << BurstLenShift) | (1 << CALShift);

out:
 tp->csr0 = csr0;
 if (tulip_debug > 2)
  netdev_dbg(dev, "MWI config cacheline=%d, csr0=%08x\n",
      cache, csr0);
}
#endif

/*
 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
 * is the DM910X and the on chip ULi devices
 */

static int tulip_uli_dm_quirk(struct pci_dev *pdev)
{
 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
  return 1;
 return 0;
}

static const struct net_device_ops tulip_netdev_ops = {
 .ndo_open  = tulip_open,
 .ndo_start_xmit  = tulip_start_xmit,
 .ndo_tx_timeout  = tulip_tx_timeout,
 .ndo_stop  = tulip_close,
 .ndo_get_stats  = tulip_get_stats,
 .ndo_do_ioctl   = private_ioctl,
 .ndo_set_rx_mode = set_rx_mode,
 .ndo_change_mtu  = eth_change_mtu,
 .ndo_set_mac_address = eth_mac_addr,
 .ndo_validate_addr = eth_validate_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
 .ndo_poll_controller  = poll_tulip,
#endif
};

DEFINE_PCI_DEVICE_TABLE(early_486_chipsets) = {
 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
 { },
};

static int tulip_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
 struct tulip_private *tp;
 /* See note below on the multiport cards. */
 static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
 static int last_irq;
 static int multiport_cnt; /* For four-port boards w/one EEPROM */
 int i, irq;
 unsigned short sum;
 unsigned char *ee_data;
 struct net_device *dev;
 void __iomem *ioaddr;
 static int board_idx = -1;
 int chip_idx = ent->driver_data;
 const char *chip_name = tulip_tbl[chip_idx].chip_name;
 unsigned int eeprom_missing = 0;
 unsigned int force_csr0 = 0;

#ifndef MODULE
 if (tulip_debug > 0)
  printk_once(KERN_INFO "%s", version);
#endif

 board_idx++;

 /*
  * Lan media wire a tulip chip to a wan interface. Needs a very
  * different driver (lmc driver)
  */

        if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
  pr_err("skipping LMC card\n");
  return -ENODEV;
 } else if (pdev->subsystem_vendor == PCI_VENDOR_ID_SBE &&
     (pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_T3E3 ||
      pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_2T3E3_P0 ||
      pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_2T3E3_P1)) {
  pr_err("skipping SBE T3E3 port\n");
  return -ENODEV;
 }

 /*
  * DM910x chips should be handled by the dmfe driver, except
  * on-board chips on SPARC systems.  Also, early DM9100s need
  * software CRC which only the dmfe driver supports.
  */

#ifdef CONFIG_TULIP_DM910X
 if (chip_idx == DM910X) {
  struct device_node *dp;

  if (pdev->vendor == 0x1282 && pdev->device == 0x9100 &&
      pdev->revision < 0x30) {
   pr_info("skipping early DM9100 with Crc bug (use dmfe)\n");
   return -ENODEV;
  }

  dp = pci_device_to_OF_node(pdev);
  if (!(dp && of_get_property(dp, "local-mac-address", NULL))) {
   pr_info("skipping DM910x expansion card (use dmfe)\n");
   return -ENODEV;
  }
 }
#endif

 /*
  * Looks for early PCI chipsets where people report hangs
  * without the workarounds being on.
  */

 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
       aligned.  Aries might need this too. The Saturn errata are not
       pretty reading but thankfully it's an old 486 chipset.

    2. The dreaded SiS496 486 chipset. Same workaround as Intel
       Saturn.
 */

 if (pci_dev_present(early_486_chipsets)) {
  csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
  force_csr0 = 1;
 }

 /* bugfix: the ASIX must have a burst limit or horrible things happen. */
 if (chip_idx == AX88140) {
  if ((csr0 & 0x3f00) == 0)
   csr0 |= 0x2000;
 }

 /* PNIC doesn't have MWI/MRL/MRM... */
 if (chip_idx == LC82C168)
  csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */

 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
 if (tulip_uli_dm_quirk(pdev)) {
  csr0 &= ~0x01f100ff;
#if defined(CONFIG_SPARC)
                csr0 = (csr0 & ~0xff00) | 0xe000;
#endif
 }
 /*
  * And back to business
  */

 i = pci_enable_device(pdev);
 if (i) {
  pr_err("Cannot enable tulip board #%d, aborting\n", board_idx);
  return i;
 }

 /* The chip will fail to enter a low-power state later unless
  * first explicitly commanded into D0 */
 if (pci_set_power_state(pdev, PCI_D0)) {
  pr_notice("Failed to set power state to D0\n");
 }

 irq = pdev->irq;

 /* alloc_etherdev ensures aligned and zeroed private structures */
 dev = alloc_etherdev (sizeof (*tp));
 if (!dev)
  return -ENOMEM;

 SET_NETDEV_DEV(dev, &pdev->dev);
 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
  pr_err("%s: I/O region (0x%llx@0x%llx) too small, aborting\n",
         pci_name(pdev),
         (unsigned long long)pci_resource_len (pdev, 0),
         (unsigned long long)pci_resource_start (pdev, 0));
  goto err_out_free_netdev;
 }

 /* grab all resources from both PIO and MMIO regions, as we
  * don't want anyone else messing around with our hardware */
 if (pci_request_regions (pdev, DRV_NAME))
  goto err_out_free_netdev;

 ioaddr =  pci_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size);

 if (!ioaddr)
  goto err_out_free_res;

 /*
  * initialize private data structure 'tp'
  * it is zeroed and aligned in alloc_etherdev
  */
 tp = netdev_priv(dev);
 tp->dev = dev;

 tp->rx_ring = pci_alloc_consistent(pdev,
        sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
        sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
        &tp->rx_ring_dma);
 if (!tp->rx_ring)
  goto err_out_mtable;
 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;

 tp->chip_id = chip_idx;
 tp->flags = tulip_tbl[chip_idx].flags;

 pr_info("%s: No allowed WOL support\n",__func__);
 
 /*tp->wolinfo.supported = 0;
 tp->wolinfo.wolopts = 0;*/
 
 
 /* COMET: Enable power management only for AN983B */
 /*if (chip_idx == COMET ) {
  u32 sig;
  pci_read_config_dword (pdev, 0x80, &sig);
  if (sig == 0x09811317) {
   tp->flags |= COMET_PM;
   tp->wolinfo.supported = WAKE_PHY | WAKE_MAGIC;
   pr_info("%s: Enabled WOL support for AN983B\n",
    __func__);
  }
 }*/
 
 tp->pdev = pdev;
 tp->base_addr = ioaddr;
 tp->revision = pdev->revision;
 tp->csr0 = csr0;
 spin_lock_init(&tp->lock);
 spin_lock_init(&tp->mii_lock);
 init_timer(&tp->timer);
 tp->timer.data = (unsigned long)dev;
 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;

 INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task);

#ifdef CONFIG_TULIP_MWI
 if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
  tulip_mwi_config (pdev, dev);
#endif

 /* Stop the chip's Tx and Rx processes. */
 tulip_stop_rxtx(tp);

 pci_set_master(pdev);

#ifdef CONFIG_GSC
 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
  switch (pdev->subsystem_device) {
  default:
   break;
  case 0x1061:
  case 0x1062:
  case 0x1063:
  case 0x1098:
  case 0x1099:
  case 0x10EE:
   tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
   chip_name = "GSC DS21140 Tulip";
  }
 }
#endif

 /* Clear the missed-packet counter. */
 ioread32(ioaddr + CSR8);

 /* The station address ROM is read byte serially.  The register must
    be polled, waiting for the value to be read bit serially from the
    EEPROM.
    */
 ee_data = tp->eeprom;
 memset(ee_data, 0, sizeof(tp->eeprom));
 sum = 0;
 if (chip_idx == LC82C168) {
  for (i = 0; i < 3; i++) {
   int value, boguscnt = 100000;
   iowrite32(0x600 | i, ioaddr + 0x98);
   do {
    value = ioread32(ioaddr + CSR9);
   } while (value < 0  && --boguscnt > 0);
   put_unaligned_le16(value, ((__le16 *)dev->dev_addr) + i);
   sum += value & 0xffff;
  }
 } else if (chip_idx == COMET) {
  /* No need to read the EEPROM. */
  put_unaligned_le32(ioread32(ioaddr + 0xA4), dev->dev_addr);
  put_unaligned_le16(ioread32(ioaddr + 0xA8), dev->dev_addr + 4);
  for (i = 0; i < 6; i ++)
   sum += dev->dev_addr[i];
 } else {
  /* A serial EEPROM interface, we read now and sort it out later. */
  int sa_offset = 0;
  int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
  int ee_max_addr = ((1 << ee_addr_size) - 1) * sizeof(u16);

  if (ee_max_addr > sizeof(tp->eeprom))
   ee_max_addr = sizeof(tp->eeprom);

  for (i = 0; i < ee_max_addr ; i += sizeof(u16)) {
   u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
   ee_data[i] = data & 0xff;
   ee_data[i + 1] = data >> 8;
  }

  /* DEC now has a specification (see Notes) but early board makers
     just put the address in the first EEPROM locations. */
  /* This does  memcmp(ee_data, ee_data+16, 8) */
  for (i = 0; i < 8; i ++)
   if (ee_data[i] != ee_data[16+i])
    sa_offset = 20;
  if (chip_idx == CONEXANT) {
   /* Check that the tuple type and length is correct. */
   if (ee_data[0x198] == 0x04  &&  ee_data[0x199] == 6)
    sa_offset = 0x19A;
  } else if (ee_data[0] == 0xff  &&  ee_data[1] == 0xff &&
       ee_data[2] == 0) {
   sa_offset = 2;  /* Grrr, damn Matrox boards. */
   multiport_cnt = 4;
  }
#ifdef CONFIG_MIPS_COBALT
               if ((pdev->bus->number == 0) &&
                   ((PCI_SLOT(pdev->devfn) == 7) ||
                    (PCI_SLOT(pdev->devfn) == 12))) {
                       /* Cobalt MAC address in first EEPROM locations. */
                       sa_offset = 0;
         /* Ensure our media table fixup get's applied */
         memcpy(ee_data + 16, ee_data, 8);
               }
#endif
#ifdef CONFIG_GSC
  /* Check to see if we have a broken srom */
  if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
   /* pci_vendor_id and subsystem_id are swapped */
   ee_data[0] = ee_data[2];
   ee_data[1] = ee_data[3];
   ee_data[2] = 0x61;
   ee_data[3] = 0x10;

   /* HSC-PCI boards need to be byte-swaped and shifted
    * up 1 word.  This shift needs to happen at the end
    * of the MAC first because of the 2 byte overlap.
    */
   for (i = 4; i >= 0; i -= 2) {
    ee_data[17 + i + 3] = ee_data[17 + i];
    ee_data[16 + i + 5] = ee_data[16 + i];
   }
  }
#endif

  for (i = 0; i < 6; i ++) {
   dev->dev_addr[i] = ee_data[i + sa_offset];
   sum += ee_data[i + sa_offset];
  }
 }
 /* Lite-On boards have the address byte-swapped. */
 if ((dev->dev_addr[0] == 0xA0 ||
      dev->dev_addr[0] == 0xC0 ||
      dev->dev_addr[0] == 0x02) &&
     dev->dev_addr[1] == 0x00)
  for (i = 0; i < 6; i+=2) {
   char tmp = dev->dev_addr[i];
   dev->dev_addr[i] = dev->dev_addr[i+1];
   dev->dev_addr[i+1] = tmp;
  }
 /* On the Zynx 315 Etherarray and other multiport boards only the
    first Tulip has an EEPROM.
    On Sparc systems the mac address is held in the OBP property
    "local-mac-address".
    The addresses of the subsequent ports are derived from the first.
    Many PCI BIOSes also incorrectly report the IRQ line, so we correct
    that here as well. */
 if (sum == 0  || sum == 6*0xff) {
#if defined(CONFIG_SPARC)
  struct device_node *dp = pci_device_to_OF_node(pdev);
  const unsigned char *addr;
  int len;
#endif
  eeprom_missing = 1;
  for (i = 0; i < 5; i++)
   dev->dev_addr[i] = last_phys_addr[i];
  dev->dev_addr[i] = last_phys_addr[i] + 1;
#if defined(CONFIG_SPARC)
  addr = of_get_property(dp, "local-mac-address", &len);
  if (addr && len == 6)
   memcpy(dev->dev_addr, addr, 6);
#endif
#if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
  if (last_irq)
   irq = last_irq;
#endif
 }

 for (i = 0; i < 6; i++)
  last_phys_addr[i] = dev->dev_addr[i];
 last_irq = irq;

 /* The lower four bits are the media type. */
 if (board_idx >= 0  &&  board_idx < MAX_UNITS) {
  if (options[board_idx] & MEDIA_MASK)
   tp->default_port = options[board_idx] & MEDIA_MASK;
  if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
   tp->full_duplex = 1;
  if (mtu[board_idx] > 0)
   dev->mtu = mtu[board_idx];
 }
 if (dev->mem_start & MEDIA_MASK)
  tp->default_port = dev->mem_start & MEDIA_MASK;
 if (tp->default_port) {
  pr_info(DRV_NAME "%d: Transceiver selection forced to %s\n",
   board_idx, medianame[tp->default_port & MEDIA_MASK]);
  tp->medialock = 1;
  if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
   tp->full_duplex = 1;
 }
 if (tp->full_duplex)
  tp->full_duplex_lock = 1;

 if (tulip_media_cap[tp->default_port] & MediaIsMII) {
  static const u16 media2advert[] = {
   0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200
  };
  tp->mii_advertise = media2advert[tp->default_port - 9];
  tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
 }

 if (tp->flags & HAS_MEDIA_TABLE) {
  sprintf(dev->name, DRV_NAME "%d", board_idx); /* hack */
  tulip_parse_eeprom(dev);
  strcpy(dev->name, "eth%d");   /* un-hack */
 }

 if ((tp->flags & ALWAYS_CHECK_MII) ||
  (tp->mtable  &&  tp->mtable->has_mii) ||
  ( ! tp->mtable  &&  (tp->flags & HAS_MII))) {
  if (tp->mtable  &&  tp->mtable->has_mii) {
   for (i = 0; i < tp->mtable->leafcount; i++)
    if (tp->mtable->mleaf[i].media == 11) {
     tp->cur_index = i;
     tp->saved_if_port = dev->if_port;
     tulip_select_media(dev, 2);
     dev->if_port = tp->saved_if_port;
     break;
    }
  }

  /* Find the connected MII xcvrs.
     Doing this in open() would allow detecting external xcvrs
     later, but takes much time. */
  tulip_find_mii (dev, board_idx);
 }

 /* The Tulip-specific entries in the device structure. */
 dev->netdev_ops = &tulip_netdev_ops;
 dev->watchdog_timeo = TX_TIMEOUT;
#ifdef CONFIG_TULIP_NAPI
 netif_napi_add(dev, &tp->napi, tulip_poll, 16);
#endif
 SET_ETHTOOL_OPS(dev, &ops);

 if (register_netdev(dev))
  goto err_out_free_ring;

 pci_set_drvdata(pdev, dev);

 dev_info(&dev->dev,
#ifdef CONFIG_TULIP_MMIO
   "%s rev %d at MMIO %#llx,%s %pM, IRQ %d\n",
#else
   "%s rev %d at Port %#llx,%s %pM, IRQ %d\n",
#endif
   chip_name, pdev->revision,
   (unsigned long long)pci_resource_start(pdev, TULIP_BAR),
   eeprom_missing ? " EEPROM not present," : "",
   dev->dev_addr, irq);

        if (tp->chip_id == PNIC2)
  tp->link_change = pnic2_lnk_change;
 else if (tp->flags & HAS_NWAY)
  tp->link_change = t21142_lnk_change;
 else if (tp->flags & HAS_PNICNWAY)
  tp->link_change = pnic_lnk_change;

 /* Reset the xcvr interface and turn on heartbeat. */
 switch (chip_idx) {
 case DC21140:
 case DM910X:
 default:
  if (tp->mtable)
   iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
  break;
 case DC21142:
  if (tp->mii_cnt  ||  tulip_media_cap[dev->if_port] & MediaIsMII) {
   iowrite32(csr6_mask_defstate, ioaddr + CSR6);
   iowrite32(0x0000, ioaddr + CSR13);
   iowrite32(0x0000, ioaddr + CSR14);
   iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
  } else
   t21142_start_nway(dev);
  break;
 case PNIC2:
         /* just do a reset for sanity sake */
  iowrite32(0x0000, ioaddr + CSR13);
  iowrite32(0x0000, ioaddr + CSR14);
  break;
 case LC82C168:
  if ( ! tp->mii_cnt) {
   tp->nway = 1;
   tp->nwayset = 0;
   iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
   iowrite32(0x30, ioaddr + CSR12);
   iowrite32(0x0001F078, ioaddr + CSR6);
   iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
  }
  break;
 case MX98713:
 case COMPEX9881:
  iowrite32(0x00000000, ioaddr + CSR6);
  iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
  iowrite32(0x00000001, ioaddr + CSR13);
  break;
 case MX98715:
 case MX98725:
  iowrite32(0x01a80000, ioaddr + CSR6);
  iowrite32(0xFFFFFFFF, ioaddr + CSR14);
  iowrite32(0x00001000, ioaddr + CSR12);
  break;
 case COMET:
  /* No initialization necessary. */
  break;
 }

 /* put the chip in snooze mode until opened */
 tulip_set_power_state (tp, 0, 1);

 return 0;

err_out_free_ring:
 pci_free_consistent (pdev,
        sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
        sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
        tp->rx_ring, tp->rx_ring_dma);

err_out_mtable:
 kfree (tp->mtable);
 pci_iounmap(pdev, ioaddr);

err_out_free_res:
 pci_release_regions (pdev);

err_out_free_netdev:
 free_netdev (dev);
 return -ENODEV;
}


/* set the registers according to the given wolopts */
/*static void tulip_set_wolopts (struct pci_dev *pdev, u32 wolopts)
{
 struct net_device *dev = pci_get_drvdata(pdev);
 struct tulip_private *tp = netdev_priv(dev);
 void __iomem *ioaddr = tp->base_addr;

 if (tp->flags & COMET_PM) {
   
  unsigned int tmp;
   
  tmp = ioread32(ioaddr + CSR18);
  tmp &= ~(comet_csr18_pmes_sticky | comet_csr18_apm_mode | comet_csr18_d3a);
  tmp |= comet_csr18_pm_mode;
  iowrite32(tmp, ioaddr + CSR18);
   
  tmp = ioread32(ioaddr + CSR13);
  tmp &= ~(comet_csr13_linkoffe | comet_csr13_linkone | comet_csr13_wfre | comet_csr13_lsce | comet_csr13_mpre);
  if (wolopts & WAKE_MAGIC)
   tmp |= comet_csr13_mpre;
  if (wolopts & WAKE_PHY)
   tmp |= comet_csr13_linkoffe | comet_csr13_linkone | comet_csr13_lsce;
  tmp |= comet_csr13_wfr | comet_csr13_mpr | comet_csr13_lsc;
  iowrite32(tmp, ioaddr + CSR13);
 } 
 
}
*/

#ifdef CONFIG_PM


static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
{
 //pci_power_t pstate;
 struct net_device *dev = pci_get_drvdata(pdev);
 //struct tulip_private *tp = netdev_priv(dev);

 if (!dev)
  return -EINVAL;

 if (!netif_running(dev))
  goto save_state;

 tulip_down(dev);

 netif_device_detach(dev);
 /* FIXME: it needlessly adds an error path. */
 //Nuevo añadido: free_irq(tp->pdev->irq, dev);

save_state:
 pci_save_state(pdev);
 pci_disable_device(pdev);
//Nuevo:
    pci_set_power_state(pdev, pci_choose_state(pdev, state)); 
 
 /*pstate = pci_choose_state(pdev, state);
 if (state.event == PM_EVENT_SUSPEND && pstate != PCI_D0) {
  int rc;

  tulip_set_wolopts(pdev, tp->wolinfo.wolopts);
  rc = pci_enable_wake(pdev, pstate, tp->wolinfo.wolopts);
  if (rc)
   pr_err("pci_enable_wake failed (%d)\n", rc);
 }
 pci_set_power_state(pdev, pstate);
    */
    
 return 0;
}


static int tulip_resume(struct pci_dev *pdev)
{
 struct net_device *dev = pci_get_drvdata(pdev);
// struct tulip_private *tp = netdev_priv(dev);
// void __iomem *ioaddr = tp->base_addr;
 int retval;
// unsigned int tmp;

 if (!dev)
  return -EINVAL;

 pci_set_power_state(pdev, PCI_D0);
 pci_restore_state(pdev);

 if (!netif_running(dev))
  return 0;

 if ((retval = pci_enable_device(pdev))) {
  pr_err("pci_enable_device failed in resume\n");
  return retval;
 }

 retval = request_irq(pdev->irq, tulip_interrupt, IRQF_SHARED,
        dev->name, dev);
 if (retval) {
  pr_err("request_irq failed in resume\n");
  return retval;
 }

// if (tp->flags & COMET_PM) {
  //pci_enable_wake(pdev, PCI_D3hot, 0);
  //pci_enable_wake(pdev, PCI_D3cold, 0);

  /* Clear the PMES flag */
  //tmp = ioread32(ioaddr + CSR20);
  //tmp |= comet_csr20_pmes;
  //iowrite32(tmp, ioaddr + CSR20);

  /* Disable all wake-up events */
 // tulip_set_wolopts(pdev, 0);
 //}
 netif_device_attach(dev);

 if (netif_running(dev))
  tulip_up(dev);

 return 0;
}

#endif /* CONFIG_PM */


static void tulip_remove_one(struct pci_dev *pdev)
{
 struct net_device *dev = pci_get_drvdata (pdev);
 struct tulip_private *tp;

 if (!dev)
  return;

 tp = netdev_priv(dev);
 unregister_netdev(dev);
 pci_free_consistent (pdev,
        sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
        sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
        tp->rx_ring, tp->rx_ring_dma);
 kfree (tp->mtable);
 pci_iounmap(pdev, tp->base_addr);
 free_netdev (dev);
 pci_release_regions (pdev);
 pci_set_drvdata (pdev, NULL);

 /* pci_power_off (pdev, -1); */
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */

static void poll_tulip (struct net_device *dev)
{
 struct tulip_private *tp = netdev_priv(dev);
 const int irq = tp->pdev->irq;

 /* disable_irq here is not very nice, but with the lockless
    interrupt handler we have no other choice. */
 disable_irq(irq);
 tulip_interrupt (irq, dev);
 enable_irq(irq);
}
#endif

static struct pci_driver tulip_driver = {
 .name  = DRV_NAME,
 .id_table = tulip_pci_tbl,
 .probe  = tulip_init_one,
 .remove  = tulip_remove_one,
#ifdef CONFIG_PM
 .suspend = tulip_suspend,
 .resume  = tulip_resume,
#endif /* CONFIG_PM */
};


static int __init tulip_init (void)
{
#ifdef MODULE
 pr_info("%s", version);
#endif

 /* copy module parms into globals */
 tulip_rx_copybreak = rx_copybreak;
 tulip_max_interrupt_work = max_interrupt_work;

 /* probe for and init boards */
 return pci_register_driver(&tulip_driver);
}


static void __exit tulip_cleanup (void)
{
 pci_unregister_driver (&tulip_driver);
}


module_init(tulip_init);
module_exit(tulip_cleanup);
Funciona para kernels 3.2.0-4, pero sospecho que compilará sin mayor problema en kernels superiores. En cualquier caso para adaptarlo a otros kernel habría que comentar las mismas partes que he comentado en el tulip_core.c para el kernel 3.2.0-4, comparando con el tulip_core.c original. Quizá sustituyendo directamente el tulip_core.c por el que se enlaza funcione sin más, ya que es un driver que no cambia mucho.

Antes de nada, bajamos del enlace anterior el fichero tulip_core.c modificado y lo guardamos en una carpeta /root/tulip del PC donde vayamos a realizar la compilación, un equipo Fujitsu P300 en mi caso. Los pasos a dar para compilar el driver tulip son los siguientes:

1) Confirmamos la versión del kernel y bajamos las cabeceras y el código fuente:

# apt-get update
# cat /proc/version
Linux version 3.2.0-4-686-pae (debian-kernel@lists.debian.org) (gcc version 4.6.3 (Debian 4.6.3-14) ) #1 SMP Debian 3.2.65-1+deb7u1
# apt-get install linux-headers-3.2.0-4-686-pae
# apt-get install linux-source-3.2

2) Descomprimimos el kernel y antes de seguir hacemos una copia del driver original (tulip.ko) por si metemos la pata poder restaurarlo luego. La copia se hace a un directorio /root/tulip que hemos creado previamente.

# cd /usr/src/
# tar jfvx linux-source-3.2.tar.bz2
# cd /lib/modules/3.2.0-4-686-pae/kernel/drivers/net/ethernet/dec/tulip/
# cp tulip.ko /root/tulip/tulip-original.ko

3) Volvemos al código fuente y preparamos el entorno de compilación, indicamos que haremos uso de la configuración del kernel actualmente en funcionamiento:

# cd /usr/src/linux-source-3.2/
# make distclean; yes "" | make oldconfig
# make prepare
# make modules_prepare
# cp /usr/src/linux-headers-3.2.0-4-686-pae/Module.symvers .

4) Hacemos una copia del tulip_core.c original a /root/tulip/tulip_core.c.original y machacamos éste con /root/tulip/tulip_core.c, que es dónde hemos descargado el fichero modificado desde el enlace anteriormente indicado.

# cd /usr/src/linux-source-3.2/drivers/net/ethernet/dec/tulip/
# mv tulip_core.c  /root/tulip/tulip_core.c.original
# cp /root/tulip/tulip_core.c .

5) Bueno, ahora lanzamos la compilación:

# cd /usr/src/linux-source-3.2/
# make M=drivers/net/ethernet/dec/ clean
# make M=drivers/net/ethernet/dec/ modules

El parámetro M=drivers/net/ethernet/dec/ es muy útil para compilar solamente el driver tulip (ubicado en drivers/net/ethernet/dec) y no el kernel completo, ya que tarda una eternidad en hacerse.

6) Una vez compilado con éxito, guardamos el driver generado por si acaso y lanzamos la instalación del mismo:

# cp /usr/src/linux-source-3.2/drivers/net/ethernet/dec/tulip/tulip.ko /root/tulip/tulip-sinwol.ko
# make M=drivers/net/ethernet/dec/ modules_install

7) Veamos si se ha instalado:

#ls -1 /lib/modules/
3.2.0-4-686-pae
3.2.65

Bueno, pues parece que en la carpeta 3.2.0-4-686-pae está el driver antiguo y en la carpeta 3.2.65 el driver nuevo (la compilación de los drivers del kernel bajado desde fuentes se guarda en una carpeta distinta al instalarse para no colisionar con los que ya tenemos). Esto va bene.

8) Prosigamos: regeneramos las dependencias de módulos y metemos el módulo nuevo en en initramfs, reiniciando luego.

# depmod -a
# update-initramfs -u
# reboot

9) Al arrancar de nuevo hacemos:

# ethtool -s eth0 wol g

Carajo, no da error diciendo que no hay soporte ethtool, como debería ser. Se ha cargado el driver antiguo otra vez. Tranquilidad: por defecto se carga el driver tulip.ko de /lib/modules/3.2.0-4-686-pae y no el de /lib/modules/3.2.65. Tenemos dos opciones:

  • La fuerza bruta: machacar el driver antiguo con el nuevo, escribiendo:
# cp /root/tulip/tulip-sinwol.ko /lib/modules/3.2.0-4-686-pae/kernel/drivers/net/ethernet/dec/tulip/tulip.ko
# depmod -a
# update-initramfs -u
# reboot

o

# cp /lib/modules/3.2.65/extra/tulip/tulip.ko /lib/modules/3.2.0-4-686-pae/kernel/drivers/net/ethernet/dec/tulip/tulip.ko
# depmod -a
# update-initramfs -u
# reboot
  • Decirle al sistema que cargue antes los drivers actualizados que los propios del kernel. Para ello editamos /etc/depmod.conf y dejamos la primera línea así:
search updates built-in
....

y luego, otra vez:

# depmod -a
# update-initramfs -u

Pues nada, reiniciamos y el ethtool ahora debe dar nuestro esperado error. Si apagamos el equipo y mandamos un wakeonlan a su MAC desde otro PC nuestro ferro P300 despertará.

Y con esto y un bizcocho, hasta la semana que viene a las 8.

Actualización:

  • El usar /etc/depmod.conf para hacer que nuestro módulo se cargue antes que el que viene con el kernel por defecto no funciona en Debian Wheezy. Ese fichero ha desaparecido inexplicablemente. He leído algo sobre usar /etc/depmod.conf.d/* (que tampoco existe) y crear alli un fichero con el contenido de depmod.conf, pero no lo he probado. Recomiendo por tanto la primera solución: sobreescribir el driver original. A fin de cuentas tenemos copia.
  • Con un kernel de backports de wheezy, el 3.16, la compilación del driver no funciona. La orden:
# make M=drivers/net/ethernet/dec/ modules

Da un error en tulip_core.c, cuando compilaba perfectamente con kernel 3.2. La causa es que pasa a tratar como "error" cosas que antes eran "warning". Para solucionarlo hay que editar el fichero tulip_core.c y cambiar:

SET_ETHTOOL_OPS(dev, &ops);

por

dev->ethtool_ops = &ops;

 

martes, 10 de febrero de 2015

Forzando la configuración correcta de las Xorg.

En mi puesto detengo 2 pc conectados a un monitor Samsung SyncMaster 933HD mediante un KVM y frecuentemente me encontraba que la autodetección de las Xorg en el arranque me ponía resoluciones indeseables, ya que solo se detectaba la resolución óptima (1360x768) para el PC seleccionado por el KVM.

Como primera solución probé a generar un xorg.conf estático, con los pasos típicos:

  • Parar el gestor de sesiones: "/etc/init.d/gdm3 stop".
  • Generar un xorg.conf: "Xorg -configure", que crea un fichero /root/xorg.conf.new con el resultado de la autodetección.
  • Copiar el xorg.conf a su sitio: "cp /root/xorg.conf.new /etc/X11/xorg.conf".
  • Editar a mano /etc/X11/xorg.conf para limpiarlo de los drivers indeseados (por defecto se meten drivers de vesa, framebuffer, modesetting... además del driver correcto de la tarjeta, en mi caso "nouveau" en ambos PC), poner la resolución de 1360x768 en la lista de resoluciones y dejarla  como resolución preferida.
  • Arrancar el gestor de sesiones: "/etc/init.d/gdm3 start"

Esto normalmente es suficiente, pero en mi caso había algo que hacía que al reiniciar el equipo sin que el monitor estuviese accesible por el KVM se seleccionase de nuevo una resolución incómoda, como 1024x768 u 800x600.

lunes, 2 de febrero de 2015

Asociación de archivos en Linux.

Esto siempre se me olvida, así que voy a dejarlo aquí como referencia. En cualquiera de los escritorios de Linux tenemos un sistema para definir con que aplicación abrir un determinado tipo de archivo y la capacidad de mostrar una lista de aplicaciones candidatas, usando la opción "Abrir con..." del menú contextual del fichero.

La forma en que se determina a que tipo pertenece un fichero es mediante uno de estos dos comandos:

file --mime-type -b "nombre fichero"

o

xdg-mime query filetype "nombre fichero"

que nos da un tipo MIME. El sistema interno con el que file reconoce un fichero es un tanto esotérico, debido a que Linux no tiene información sobre el tipo MIME en los metadatos del sistema de archivos (como si tenía, por ejemplo, BeOS en los 90 del siglo pasado ). Para ello "file" se basa en "números mágicos"  (si, como suena), examinando el fichero e intentando interpretar a que tipo pertenece en función de su contenido.